Vollständige Beschreibung
Eine PLL besteht aus 3 Teilen: spannungsgesteuerter Oszillator (VCO), Phasenkomparator (PC) und Tiefpass-Filter (LPF).
Und so funktioniert eine PLL:
Der Ausgang des internen VCOs (lineare Steu...
mehr lesen
Eine PLL besteht aus 3 Teilen: spannungsgesteuerter Oszillator (VCO), Phasenkomparator (PC) und Tiefpass-Filter (LPF).
Und so funktioniert eine PLL:
Der Ausgang des internen VCOs (lineare Steuerspannungskennlinie, Rechteck-Ausgang) wird in dem Phasen-Komparator PC mit der Frequenz eines externen Signals (z.B. der Rechteck-Ausgang eines normalen VCOs/A-110) verglichen. Der Ausgang des PCs ist ein digitales Signal (low/high/tristate), das angibt ob die Frequenz- bzw. die Phasen-Differenz der beiden verglichenen Signale positiv, Null oder negativ ist. Der Ausgang des PCs wird mit dem Tiefpass-Filter LPF geglättet, um ein "weiches" Steuersignal für den internen VCO zu erhalten.
Die drei Einheiten VCO, PC und LPF bilden ein rückgekoppeltes System das folgendermaßen arbeitet:
Falls die externe Frequenz größer ist als die des internen VCOs steigt die Steuerspannung für den internen VCO solange an, bis beide Frequenzen gleich sind. Falls die externe Frequenz kleiner ist als die des internen VCOs fällt die Steuerspannung für den internen VCO solange, bis beide Frequenzen gleich sind. In beiden Fällen erreicht der interne VCO nach einer gewissen Verzögerungszeit, die durch die Frequenz des LPF festgelegt wird, die gleiche Frequenz wie das externe Signal.
Man fragt sich natürlich: was soll ein Modul, das einer vorgegebenen Frequenz (z.B. VCO) folgt. Da kann man ja gleich den VCO selbst verwenden. Der Grund hierfür sind einige "Stolpersteine", die dafür sorgen, dass eine PLL weit davon entfernt ist immer genau das zu machen, was oben so einfach beschrieben wurde. Der erste "Stolperstein" ist der Phasencomparator (PC).
Das A-196 verfügt über 3 verschiedene PCs, wobei jede ihre Vor- und Nachteile hat:
PC1 ist ein Exor-Gatter (Exor = Exclusive Oder) und "rastet" beispielsweise auch bei Harmonischen der Frequenzen (d.h. Frequenzvielfachen) ein. Dies muss jedoch für musikalische Anwendungen nicht unbedingt ein Nachteil sein, sondern kann gezielt für bestimmte Funktionen genutzt werden.
PC2 ist ein sogenanntes RS Flipflop und insbesondere für Effektsounds gut einzusetzen.
PC3 ist ein komplexes digitales Speichernetzwerk und - vom rein technischen Standpunkt her gesehen - der beste PC, da er z.B. nicht bei Harmonischen "einrastet" und auch sonst das beste Verhalten zeigt.
Der Anwender kann beim A-196 einen der 3 PC mit Hilfe eines Schalters anwählen. Besonderes Augenmerk muss auch dem Tiefpassfilter (LPF) geschenkt werden. Um eine möglich weiche Steuerspannung für den internen VCO zu erhalten (geringe Restwelligkeit), sollte die Frequenz des LPF deutlich niedriger als die Frequenz des externen Signals bzw. des internen VCOs sein. Andernfalls "tanzt" die Frequenz des internen VCOs ständig um die Frequenz des externen Signals herum und man erhält einen sog. Frequenz-Jitter. Man kann dieses "Fehlverhalten" aber auch ganz gezielt für bestimmte Effekte einsetzen. Schließlich kann man die Frequenz des LPF auch so hoch wählen, dass diese im Bereich des externen Signals bzw. des VCOs liegt. In diesem Fall ändert sich die Steuerspannung für den VCO innerhalb einer Periode, was wiederum zu völlig neuen Effekten führt.